THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Tutorial Classwork 5

1. Let X be a topological space and ~ be an equivalent relation. The quotient topology of the space X/\sim is defined by

$$\mathfrak{T}_{quot} = \{ U \subset X / \sim | \pi^{-1}(U) \in \mathfrak{T}_X \}$$

Show that \mathfrak{T}_{quot} is a topology on X/\sim .

2. Let X be a topological space and \sim be an equivalent relation. Suppose that the quotient space X/\sim with quotient topology is Hausdorff. Is X necessarily Hausdorff?

(Hint: The equivalent relation may identify two non-separated points together.)

3. * Consider an equivalent relation \sim on \mathbb{R}^2 defined by

$$(x_1, y_2) \sim (x_2, y_2) \iff y_1 - x_1^2 = y_2 - x_2^2$$

Show that $(\mathbb{R}^2/\sim, \mathfrak{T}_{quot})$ is homeomorphic to $(\mathbb{R}, \mathfrak{T}_{std})$.